# construire avec le bois

# Etude de cas Logements collectifs

# numéro 7

MAI 2009

### déjà parus

N°1\_Logement collectif social

N°2 Collèges

N°3\_Logement individuel social

N°4\_Gymnases

N°5\_Ecoles

N°6\_Extensions et surélévations en région parisienne

N°7\_Logements collectifs

### en préparation

N°8\_Maisons de retraite N°9\_Réhabilitation

### sommaire

| Logements collectifs<br>à Arques, Pas-de-Calais                | p2   |
|----------------------------------------------------------------|------|
| Logements collectifs<br>à Obernai, Bas-Rhin                    | р6   |
| Logements collectifs<br>et individuels<br>à Chantraine, Vosges | p 10 |
| Logements individuels<br>à Roubaix, Nord                       | p 14 |
| Questions générales<br>de l'étude de cas                       | p 18 |
| Vue d'ensemble                                                 | p 20 |

Pas-de-Calais (62), résidences les Nénuphars, et les Roseaux à Arques.

Bas-Rhin (67), résidence du Cèdre à Obernai. Vosges (88), résidence les Vergers à Chantraine. Nord (59), résidence Crouy à Roubaix.



# édito

L'environnement sociétal et énergétique pousse à de nouvelles solutions de construction de logements. Le collectif est une réponse adaptée en zone urbaine pour peu qu'on y associe la performance énergétique et la maîtrise des coûts.

Les exemples de construction bois en collectif au Canada et dans les pays européens montrent des applications multi-étages entièrement performantes.

Cette étude de cas propose 4 solutions où la mixité des matériaux apporte de la performance, à conditions que certaines habitudes de mise en œuvre soient remises en cause. C'est précisément ce que préconisent certains maîtres d'œuvre : à méditer et à appliquer.

Michel FABER, Directeur FIBRA Fédération Forêt-Bois Rhône-Alpes - www.fibra.net

# construire avec le bois

Une édition du Comité National pour le Développement du Bois

6 avenue de Saint-Mandé • 75012 Paris Tél. 01 53 17 19 60 • Fax 01 43 41 11 88 e-mail : info@cndb.org

conception : Jean-Marc Pauget
contact : jm.pauget@cndb.org

ISBN: 978-2-9530638-2-0

Retrouvez toutes les études de cas sur www.cndb.org



# Pas-de-Calais (62) à Arques, 43 logements

Un niveau de préfabrication élevé a été mis en œuvre pour réaliser ce bâtiment : préfabrication de murs fermés et intégration des réseaux électriques, planchers en bois massif. Construction 2007 - 2008.





### le programme

Réalisation de 43 logements collectifs.

### le maître d'ouvrage

Habitat 62/59.

### les intervenants

Agence E.O.S.

M. Eric STROOBANDT et Olivier SOCKEEL, architectes, Dunkerque (59).

Entreprise BEL'BOIS,

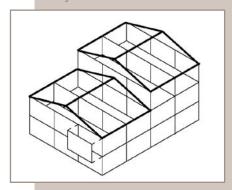
bois - ossature et menuiserie,

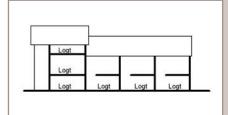
M. André HENNEBELLE, Lillers (62).

MENUISERIE BILLIET,

M. BILLIET, Bierne (59).

BET HQE SOLENER,


bureau d'études technique,


Lille (59).

### le choix contructif

Le bâtiment est réalisé avec des murs en ossature bois, et des planchers en panneaux de bois massif.

### Le système constructif





Coupe transversale



STROOBANDT, architecte

# Maitriser les coûts de construction et les dépenses énergétiques

"Lorsqu'il a lancé ce programme de logements sur cette ancienne friche industrielle, le maître d'ouvrage entendait faire de cette opération un modèle sur le plan environnemental. Nous avons réalisé cet ensemble de 43 logements composés de petits collectifs et maisons individuelles, en cherchant à limiter au maximum l'impact de la construction sur le site : réduction des zones de parkings et de l'imperméabilisation du sol, dispositifs de drainage des eaux, chauffe eaux solaires dont une partie en tube sous vide et une autre en capteurs classiques, etc.



Vue d'ensemble du bâtiment.

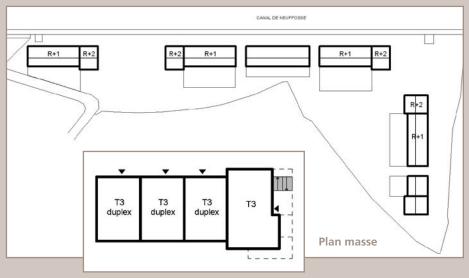
> 2 Chantier en cours.

> 3

Les murs réalisés en atelier intègrent l'ossature, la vêture, l'isolant, les réseaux électriques et la finition intérieure.

Nous souhaitions au départ utiliser un isolant en ouate de cellulose, mais nous avons finalement retenu une solution en laine de roche pour une question de budget très modeste pour cette opération : le prix au m² à la valeur 2006 ne dépassait pas les 1000 euros. Sur le plan énergétique, nous visions un niveau de consommation inférieur de 35 à 40 % à la RT 2000. Aujourd'hui, cela paraît peu performant, mais en 2004, année du dépôt de permis, ces valeurs nous plaçaient dans une bonne moyenne. La réduction des consommations était souhaitable autant pour des raisons écologiques que pour des raisons sociales. Il s'agissait de diminuer le montant de la facture dans des logements destinés à des populations aux revenus modestes.

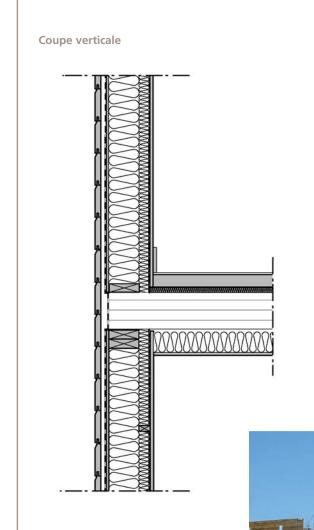
L'utilisation du bois s'inscrivait dans cette logique de chantier environnemental pilote. À l'exception des planchers de rez-de-chaussée, qu'il a fallu construire en béton posé sur pieux à cause de problème de sol - la parcelle borde la rivière Aa et un canal - tous les planchers ont été réalisés en panneaux de bois massif. Dans un souci d'optimisation de la construction, nous avons livré les logements individuels avec tous les planchers et plafonds tels quels, sans aucun revêtement d'aucune sorte, le matériau assurant à lui seul un aspect fini satisfaisant. Nous avons estimé que les problèmes acoustiques qui surviendraient pourraient être facilement maîtrisés par l'habitant, les nuisances sonores émanant de sa propre famille... En revanche, dans les


### **Volume** bois dans l'ouvrage d'Arques

| réf. | élément d'ouvrage                      | unité               | nb<br>d'unité | ratio bois<br>en dm³/unité | volume bois/<br>élt. d'ouvrage | % du<br>volume |
|------|----------------------------------------|---------------------|---------------|----------------------------|--------------------------------|----------------|
| 1    | Plancher bois porteur                  | m²                  | 1 660         | 50                         | 83 000                         | 21,5%          |
| 2    | Pan d'ossature bois porteur            | m²                  | 4 300         | 30                         | 129 000                        | 33,5%          |
| 3    | Ossature poteaux-poutres               | ml                  |               | 25                         | 0                              | 0 %            |
| 4    | Charpente tradi. et lamellé-collé      | m <sup>2</sup>      |               | 40                         | 0                              | 0 %            |
| 5    | Charpente industrielle                 | m²                  | 1 485         | 30                         | 44 550                         | 11,6%          |
| 6    | Couverture à support discontinu        | m²                  | 1 385         | 5                          | 6 925                          | 1,8%           |
| 7    | Couverture à support continu           | m²                  |               | 20                         | 0                              | 0 %            |
| 8    | Sous-face de débord                    | m²                  |               | 15                         | 0                              | 0 %            |
| 9    | Bardage en lames de bois               | m²                  | 4 300         | 25                         | 107 500                        | 27,9%          |
| 10   | Bardage en panneau dérivé du bois      | s m²                |               | 15                         | 0                              | 0 %            |
| 11   | Portes extérieures pleines             | m²                  |               | 35                         | 0                              | 0 %            |
| 12   | Fenêtres, portes-fenêtres, châssis div | vers m²             |               | 25                         | 0                              | 0 %            |
| 13   | Volets en bois                         | m <sup>2</sup>      |               | 30                         | 0                              | 0 %            |
| 14   | Ossature bois non-porteuse             | m <sup>2</sup>      |               | 15                         | 0                              | 0 %            |
| 15   | Lambris                                | m <sup>2</sup>      |               | 15                         | 0                              | 0 %            |
| 16   | Huisserie en bois                      | U                   | 310           | 20                         | 6 200                          | 1,6%           |
| 17   | Portes intérieures en bois             | vantail             | 310           | 25                         | 7 750                          | 2 %            |
| 18   | Escalier en bois                       | ml                  |               | 60                         | 0                              | 0 %            |
| 19   | Parquet massif rapporté                | m <sup>2</sup>      |               | 30                         | 0                              | 0 %            |
| 20   | Autres parquets rapportés              | m <sup>2</sup>      |               | 15                         | 0                              | 0 %            |
| 21   | Plinthes en bois                       | m <sup>2</sup>      | 340           | 2                          | 680                            | 0,2 %          |
| 22   | Garde-corps en bois                    | ml                  |               | 30                         | 0                              | 0 %            |
| 23   | Divers                                 | m²                  |               | 2                          | 0                              | 0 %            |
| Volu | me total de bois dans l'ouvrage        | (en dm <sup>3</sup> | )             |                            | 385 605                        | 100 %          |
| SHO  | N de l'ouvrage                         |                     |               |                            | 3 738                          |                |
| Volu | ıme de bois en dm³/m² de SHC           | ON                  |               |                            | 103                            |                |
|      |                                        |                     |               |                            |                                |                |

logements collectifs, les règles acoustiques ont imposé la mise en œuvre d'un doublage phonique renforcé. On a placé sur la chape un résilient phonique haute densité et 10 cm de laine de verre en sous face du plancher, doublé par un faux plafond.

Pour le reste de la construction, nous avons fait appel au bois à chaque fois que cela était possible. Le pari était d'utiliser les matériaux alternatifs à l'échelle d'un îlot d'un hectare et pas seulement d'une maison. Les façades sont en bardage Douglas traité en autoclave, avec des menuiseries bois triple vitrage. 46 escaliers en Hêtre desservent les logements : ils ont été


fabriqués pour le projet. Notre contrat n'incluait pas la mission EXE: nous avions juste un rôle consultatif et l'entreprise bois, qui gérait aussi les lots de second œuvre s'occupait de la conduite complète du chantier. Les panneaux de façades étaient fabriqués en atelier puis amenés directement sur le site. Malgré ce degré élevé de préfabrication, les travaux n'ont pas avancé aussi vite qu'ils auraient dû car l'entreprise était très sollicitée par ses autres chantiers. On voit que la carence d'entreprise dans le secteur du bois pose un vrai problème qui vient impacter la réception des bâtiments, très bien exécutés au demeurant."



Plan



### • suite Pas-de-Calais



### mur exterieur

Bardage horizontal Douglas, autoclavé 22 mm Liteaux verticaux (22/45) Pare-pluie Panneau OSB 9 mm Ossature BM (45/120) Isolation laine de verre 120 mm Liteaux horizontaux (22/45) Isolation complémentaire 40 mm Pare-vapeur Plaque BA 13 mm

### plancher

Sol souple
Chape béton 50mm
Domisol 20mm
Panneau contrecollé
Bois massif KLH 146mm
Isolation laine de verre 80mm
Plaque de plâtre 13mm
sur suspente acoustique

### André HENNEBELLE, entreprise BEL'BOIS

"Le chantier d'Arques rentrait parfaitement dans nos compétences : nous sommes une entreprise équipée pour la préfabrication bois lourde, qui nécessite tout un matériel particulier comme les ponts roulants, etc. Nous pouvons fabriquer des panneaux atteignant quinze mètres de longueur et quatre mètres de hauteur. Les fluides, l'électricité, le doublage, la façade sont intégrés dès le départ aux panneaux et mis en œuvre par nos soins, ce qui évite les surprises, ou tout au moins les limitent. Sur Arques, notre entreprise était ainsi mandatée sur tous les lots, exceptés les lots peinture, sols, chauffage, sanitaire et dallage. Nous avons également sous-traité les dalles béton de rez-de-chaussée à un maçon, parce qu'elles devaient être fondées sur des pieux battus en béton de quinze mètres de profondeur et que cette technologie n'entrait pas dans nos qualifications. Ce sont les seuls planchers béton : le travail en collaboration avec le maçon est primordial, la livraison d'une dalle défectueuse se répercutant sur toute la structure et faisant perdre au final l'avantage de la construction préfabriquée. L'entreprise de maçonnerie a parfaitement joué le jeu, nous avons de notre coté contrôlé la réception des ouvrages de façon très sourcilleuse, à l'aide de télémètres et de niveaux laser. Seules quelques reprises ont été nécessaires.

### **Acoustique**

Des mesures d'isolements acoustiques ont été réalisées entre niveaux. Elles ont donné les résultats suivants :

| Mesures réalisées entre       | BRUIT A                     | Bruit                       |                |
|-------------------------------|-----------------------------|-----------------------------|----------------|
| 2 logements superposés        | Entre pièces<br>principales | Entre pièces<br>de services | d'impact<br>dB |
| Valeur réglementaire          | DnTA 53                     | DnTA 50                     | L'nTw 58       |
| Valeurs mesurées de Rdc à R+1 | 58 et 54                    | NM                          | 45 et 47       |
| Valeurs mesurées de R+1 à R+2 | 56 et 57                    | NM                          | 48 et 49       |

Parce qu'en cours de chantier, le maître d'ouvrage a souhaité augmenter la qualification thermique de son bâtiment, il a fallut contrôler l'étanchéité à l'air du bâtiment. Nous avons réalisé des tests d'infiltrométrie qui ont fait apparaître des défauts liés à des choix de mise en œuvre ou à des mises en œuvre effectuées sur chantier : on a ainsi constaté des entrées d'air parasites au niveau d'une chaudière, fixée dans un mur par quatre vis qui n'avaient pas été rebouchées et aussi une fuite sur une fenêtre d'angle, dans la partie d'huisserie qui avait été posée après la mise en place des panneaux. Pour moi, cela démontre la validité du système de préfabrication, qui est à mon avis le mode de mise en œuvre le plus adapté à ce type de bâtiment collectif à plusieurs étages : aucune de nos fenêtres réalisées en atelier ne fuyait, les panneaux de façade ont leur revêtement dès la pose, ce qui évite le recours à des échafaudages en hauteur à la fois coûteux et dangereux pour les ouvriers. L'autre souci que nous avons rencontré en matière d'étanchéité à l'air provenait des sabots de fixation des solives de toitures en caisson autoportant. Les pannes étaient fixées dans une engravure du mur et perforaient l'étanchéité. Il aurait fallut utiliser des sabots apparents.

Nous avons utilisé des panneaux de bois massif de type KLH dans les 15 logements individuels du site et nous avons réussi à faire passer l'idée de les laisser sans revêtement en plafond. Cela peut paraître irrationnel du point de vue du coût, car ces panneaux reviennent en fait plus cher qu'un système de solive classique, ils permettent de gagner du temps lors de la mise en œuvre, ce qui compense un peu les surcoûts. Au départ, le BET acoustique a rejeté tous les tests acoustiques réalisés en Allemagne. Il a fallut produire les résultats de tests réalisés en France par le CNDB pour qu'il finisse par se laisser convaincre."

|   | ä |   |   |
|---|---|---|---|
|   |   |   |   |
|   |   |   | F |
|   |   |   |   |
| , |   | 1 |   |

| performances thermiques                    | U -   |  |  |  |  |
|--------------------------------------------|-------|--|--|--|--|
| Ubat ref RT 2005                           | 0,719 |  |  |  |  |
| Ubat                                       | 0,53  |  |  |  |  |
| Gain                                       | 26 %  |  |  |  |  |
| Consommation annuelle chauffage: 56 KWh/m² |       |  |  |  |  |
| Consommation annuelle ECS : 15 KWh/m²      |       |  |  |  |  |

| Caractéristiques thermiques des paroi |                      |  |  |  |  |  |
|---------------------------------------|----------------------|--|--|--|--|--|
| type de parois                        | coefficient U W/m².K |  |  |  |  |  |
| Isolation des sols                    | 0,34/0,27            |  |  |  |  |  |
| Isolation des murs                    | 0,239                |  |  |  |  |  |
| Isolation des toits                   | 0,245                |  |  |  |  |  |
| Menuiseries                           | 1,80                 |  |  |  |  |  |
| Doubles vitrages                      | 1,10                 |  |  |  |  |  |



# Arques 43 logements collectifs

### > 1 Les planchers KLH posés à la grue permettent à priori un avancement rapide.

La sous-face des planchers bois n'a pas été gardé apparente pour des raisons acoustiques. A noter toutefois, qu'avec une épaisseur plus importante, on peut obtenir les affaiblissements demandés par la réglementation.

La pose de joints comprimés en haut des murs, permet d'assurer l'étanchéité à l'air, et donc l'isolation accoustique.

Un bon point pour la démarche environnementale : les menuiseries ont été produites localement par la Menuiserie Billiet en résineux certifié FSC.

### **Prix HT de construction constatés**

(valeurs actualisées en septembre 2008) - Opération réceptionnée début 2008

| désignation                               | montant<br>€/HT | %    | montant<br>logement | mt/m²<br>SHOB €/HT | mt/m²<br>SHON €/HT | mt/m²<br>SHAB€/HT |
|-------------------------------------------|-----------------|------|---------------------|--------------------|--------------------|-------------------|
|                                           |                 |      | 43                  | 5 954              | 4 227              | 3 663             |
| Maçonnerie                                | 458 350         | 13 % | 10 659              | 77                 | 108                | 125               |
| Charp ossat. bois - vêtures & menuiseries | 1 044 836       | 30 % | 24 299              | 175                | 247                | 285               |
| Couv. bac acier étanchéité - zinguerie    | 126 740         | 4 %  | 2 947               | 21                 | 30                 | 35                |
| Menuiseries ext. bois Ug=1,1 W/mÇ.°K      | 514 912         | 15 % | 11 975              | 86                 | 122                | 141               |
| Métallerie - serrurerie                   | 277 070         | 8%   | 6 443               | 47                 | 66                 | 76                |
| Total clos couvert                        | 2 421 908       | 69 % | 56 323              | 407                | 573                | 661               |
| Plâtrerie & isolation                     | 284 416         | 8%   | 661 448             | 67                 | 78                 |                   |
| Carrelage - faïence                       | 69 010          | 2 %  | 1 605               | 12                 | 16                 | 19                |
| Revêtements de sols minces collés         | 59 133          | 2 %  | 1 375               | 10                 | 14                 | 16                |
| Peinture - papiers peints                 | 125 415         | 4 %  | 2 917               | 21                 | 30                 | 34                |
| Total parachèvement                       | 537 974         | 15 % | 12 511              | 90                 | 127                | 147               |
| Plomberie sanitaire chauffage gaz         | 274 740         | 8%   | 6 389               | 46                 | 63                 | 73                |
| Electricité courants forts et faibles     | 167 800         | 5 %  | 3 902               | 28                 | 40                 | 46                |
| Total fluides                             | 442 540         | 13 % | 10 292              | 74                 | 103                | 119               |
| Capteurs solaires thermiques              | 117 230         | 3 %  | 2 726               | 20                 | 28                 | 32                |
| Total construction euros HT               | 3 519 652       | 100% | 81 852              | 591                | 831                | 959               |
| Terrassements VRD                         | 308 750         |      |                     |                    |                    |                   |
| Espaces libres - plantations              | 71 055          |      |                     |                    |                    |                   |
| Total adaptations                         | 379 805         |      | 8 833               | 62                 | 87                 | 101               |
| Total opération euros HT                  | 3 899 457       |      | 90 685              | 655                | 923                | 1 060             |

# Bas-Rhin (67) à Obernai, 24 logements R+1 - R+3

Murs et planchers sont réalisés avec des panneaux bois massif. Construction 2008.



### le programme

Réalisation de 24 logements collectifs R+2 et R+3 à basse consommation, en composants bois.

### le maître d'ouvrage

Obernai Habitat.

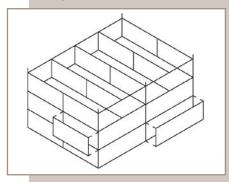
### les intervenants

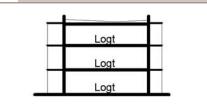
M. Régis MURY, architecte, Strasbourg (67).

Société OBJECTIF BOIS,

M. Benoît REITZ, produits Lignotrend.

Entreprise GTG, gros œuvre bois, Marlenheim (67).


Entreprise NORBA, menuiseries extérieures bois, Gundershoffen (67).


BET STEUERWALD, structure bois, M. Thomas STEUERWALD, Miltenberg (D).

### le choix contructif

Les murs sont réalisés avec des panneaux bois massif et portent une isolation extérieure. Les planchers sont également en bois semimassif et portent un ravoirage et une chape.

Le système constructif





Coupe transversale





Régis MURY, architecte Une réponse à l'appel d'offres CQFD du Ministère

"Sur Obernai, le maître d'ouvrage a voulu tester les capacités du bois dans des opérations de rénovation urbaine. Les 24 logements construits en substitution à une ancienne barre HLM visaient les certifications Qualitel et Habitat et environnement, et, sur le plan énergétique, les niveaux de consommation des bâtiments THPE. Les logements ont été répartis dans deux bâtiments parallèles orientés vers le sud pour des raisons bioclimatiques et sont entièrement construits en bois. Nous avons utilisé le procédé Lignotrend, un système innovant utilisé depuis plusieurs années en Allemagne, qui avait reçu le label CQFD (Coût-Qualité-Fiabilité-Délai) - attribué après appel d'offres par le Ministère de l'Equipement lors de l'appel à projet de 2006. Le procédé est constitué de composants verticaux et de composants dalles, sorte de plancher semi-massif que l'on peut assimiler à un hourdi creux. Les composants dalles sont calibrés sur des modules de 300 m, leur longueur maximale disponible sur chantier pouvant aller jusqu'à 18 m.

### **Volume** bois dans l'ouvrage d'Obernai

| réf. | élément d'ouvrage                       | unité            | nb<br>d'unité | ratio bois<br>en dm³/unité | volume bois/<br>élt. d'ouvrage | % du<br>volume |
|------|-----------------------------------------|------------------|---------------|----------------------------|--------------------------------|----------------|
| 1    | Plancher bois porteur                   | $m^2$            | 2 000         | 50                         | 100 000                        | 52,3%          |
| 2    | Pan d'ossature bois porteur             | m²               | 1 512         | 30                         | 45 360                         | 23,7 %         |
| 3    | Ossature poteaux-poutres                | ml               |               | 25                         | 0                              | 0 %            |
| 4    | Charpente tradi. et lamellé-collé       | m²               |               | 40                         | 0                              | 0 %            |
| 5    | Charpente industrielle                  | m²               |               | 30                         | 0                              | 0 %            |
| 6    | Couverture à support discontinu         | m²               |               | 5                          | 0                              | 0 %            |
| 7    | Couverture à support continu            | m²               |               | 20                         | 0                              | 0 %            |
| 8    | Sous-face de débord                     | m²               |               | 15                         | 0                              | 0 %            |
| 9    | Bardage en lames de bois                | m²               | 1 512         | 25                         | 37 800                         | 19,8%          |
| 10   | Bardage en panneau dérivé du bois       | s m <sup>2</sup> |               | 15                         | 0                              | 0 %            |
| 11   | Portes extérieures pleines              | m²               |               | 35                         | 0                              | 0%             |
| 12   | Fenêtres, portes-fenêtres, châssis dive | ers m²           |               | 25                         | 0                              | 0%             |
| 13   | Volets en bois                          | m²               |               | 30                         | 0                              | 0%             |
| 14   | Ossature bois non-porteuse              | m²               |               | 15                         | 0                              | 0%             |
| 15   | Lambris                                 | m²               |               | 15                         | 0                              | 0 %            |
| 16   | Huisserie en bois                       | U                | 170           | 20                         | 3 400                          | 1,8%           |
| 17   | Portes intérieures en bois              | /antail          | 170           | 25                         | 4 250                          | 2,2%           |
| 18   | Escalier en bois                        | ml               |               | 60                         | 0                              | 0 %            |
| 19   | Parquet massif rapporté                 | m²               |               | 30                         | 0                              | 0 %            |
| 20   | Autres parquets rapportés               | m²               |               | 15                         | 0                              | 0 %            |
| 21   | Plinthes en bois                        | m²               | 190           | 2                          | 380                            | 0,2 %          |
| 22   | Garde-corps en bois                     | ml               |               | 30                         | 0                              | 0 %            |
| 23   | Divers                                  | m²               |               | 2                          | 0                              | 0 %            |
|      | ıme total de bois dans l'ouvrage        | (en dm           | )             |                            | 191 190                        | 100 %          |
|      | N de l'ouvrage                          |                  |               |                            | 2 018                          |                |
| Volu | ume de bois en dm³/m² de SHO            | N                |               |                            | 95                             |                |

> 1 Vue finie de l'ensemble.

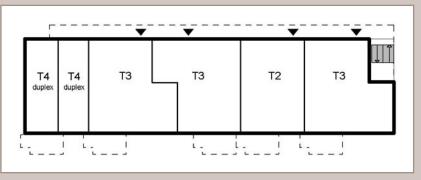
> 2

Pose d'un des panneaux de plancher.

> 3

Les murs sont équipés de la membrane d'étanchéité à l'air, qui pendant le montage passe devant les ouvertures des menuiseries.

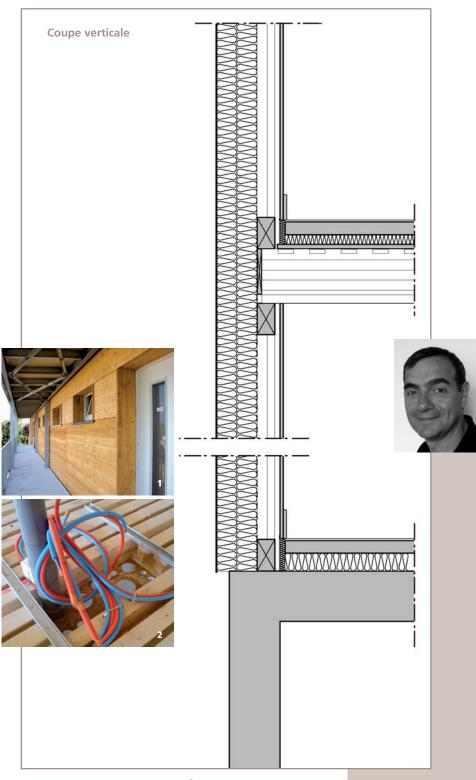
> 4


Calage vertical des murs.



Le gros œuvre a été monté en 12 jours par quatre personnes, ce qui est assez remarquable pour un bâtiment de 42 m de long et 12 m de largeur. Les panneaux sont livrés taillés et préassemblés sur le chantier, pratiquement revêtus de leur membrane d'étanchéité. La précision de construction est telle que le menuisier n'a plus qu'à poser le dormant sur la structure pour installer sa fenêtre. Donc en théorie, le chantier devrait être simple, mais dans la pratique on constate que les problèmes surviennent souvent au cours des phases de second œuvre, lors des installations des réseaux. Les entreprises qui réalisent ces travaux ne sont pas souvent habituées à travailler au niveau de précision requis sur les chantiers bois. A Obernai, nous avons ainsi constaté que pour installer un boîtier électrique, les électriciens faisaient à la scie cloche, non pas une, mais cinq ou six réservations pour boîtier d'interrupteur au même endroit, pour pouvoir les retrouver une fois les doublages plâtres mis en place! En effet, les murs intègrent des réservations verticales, qui permettent à l'électricien de passer ses gaines (cf croquis), puis le plaquiste pose son doublage intérieur. L'électricien réalise alors à la scie cloche les réservations pour les boitiers électriques. C'est ici que la précision de perçage est primordiale et a fait défaut, obligeant de multiples retouches pour retrouver le bon emplacement des gaines. Le problème est qu'une fois que ce carottage a été pratiqué dans un élément porteur de la dalle : nous avons dû calculer avec le bureau d'étude la mise en place de renforts de la structure. Ce n'est pas le seul problème que nous avons eu avec les entreprises. Les entreprises de la façade ne prêtaient absolument pas attention aux membranes d'étanchéités qui étaient déjà en place. Nous avons pu constater lors des tests d'étanchéité à l'air de nombreuses fuites dues à la perforation et au déchirement de l'étanchéité par les entreprises de second œuvre. L'isolation phonique est toujours un point sensible dans les immeubles collectifs en bois. Nous avons pu obtenir un bon niveau de confort acoustique en soufflant des billes d'argiles dans le plenum des planchers que nous avons ensuite recouvert d'un ravoirage en béton. C'est une application du principe de la loi d'acoustique masse-ressort-masse. S'agissant d'un procédé encore non reconnu en France, le fabricant a accepté de prendre en charge les coûts des tests phoniques. Pourtant cette solution est couramment mise en œuvre en Allemagne!"








Plan



## ••• suite Bas-Rhin



### Acoustique

Des mesures d'isolements acoustiques ont été réalisées entre niveaux. Elles ont données les résultats suivants :

| Manuer vánlinána natur                            | BRUIT A                     | Bruit                       |                |
|---------------------------------------------------|-----------------------------|-----------------------------|----------------|
| Mesures réalisées entre<br>2 logements superposés | Entre pièces<br>principales | Entre pièces<br>de services | d'impact<br>dB |
| Valeur réglementaire                              | DnTA 53                     | DnTA 50                     | ĽnTw 58        |
| Valeurs mesurées                                  | 54 et 57                    | NM                          | 50 et 40       |

### plancher étage

Sol souple
Chape ciment 50 mm
Film polyéthylène
Résilient acoustique
Laine de roche 40 mm
Ravoirage béton léger 18 mm
Dalle bois Lignotrend 215 mm
Remplissage des vides par billes d'argile
Sous-face apparente finie d'usine

### mur extérieur

Enduit sur isolant Isolant laine de bois 160 mm Couche extérieure traitée au latex (pare-pluie) Membrane soudée pour étanchéité à l'air Mur bois Lignotrend 90 mm Plaque de plâtre 12,5 mm

### plancher RdC

Sol souple Chape ciment 50 mm Polyane Isolant type TMS Green Efisol 70 mm Dalle béton armé 200 mm

### Benoit REITZ,

société objectif bois, chargé du conseil, de l'appui cechnologique, de la diffusion e de la formation pour l'ensemble des produits Lignotrend.

Problèmes lors de la mise en œuvre de tous les éléments connexes à la structure.

"J'ai beaucoup posé de Lignotrend durant ma carrière, mais plutôt pour des petits projets. La particularité du chantier, c'était donc sa hauteur et sa taille - 1200 à 1800 m² en volume de bois mis en œuvre - ce qui est significatif. Sur le plan de la mise en œuvre de la structure, on ne rencontrait pas de soucis techniques, de porte-à-faux, de débords, etc. Par contre, comme le bâtiment est en zone sismique, l'ingénieur bois nous a demandé une densité d'assemblages pas très courante : nous avons dû liaisonner les dalles les unes avec les autres par des agrafes posées tous les trois centimètres, contre quinze centimètres habituellement. Le montage s'est effectué en hiver : on préfère travailler sous des températures négatives, qui nous garantissent un climat sec, plutôt qu'en été ou des orages peuvent survenir et endommager les panneaux de bois.

Nous avons rencontré des problèmes surtout lors de la mise en œuvre de tous les éléments connexes à la structure, notamment sur la partie BBC qui demande de la part des entreprises un effort intellectuel de mise en œuvre.

Il faut respecter les étanchéités à l'air et les entreprises de second œuvre, que ce soit pour les fluides, les isolants, les menuiseries extérieures, toutes ont posé des problèmes. Les étanchéités à l'air ont été percées lors de la mise en œuvre des fenêtres que l'entreprise fixait comme si elles étaient dans du béton, avec des pattes à scellement! Et même pire : avant le début des travaux, toutes les entreprises - à l'exception du charpentier - étaient persuadées de travailler dans un bâtiment en béton, car aucune n'avait lu l'appel d'offres! Aucune ne savait qu'elle allait venir travailler dans un bâtiment tout bois, en dépit des plans d'exécution ultra-précis que l'architecte avait déposés dans son dossier.

Sur le plan acoustique, on s'est rendu compte avant l'appel d'offres que les techniques de billes d'argiles qui sont éprouvées en Allemagne ne pouvaient pas être mises en œuvre en France. On a des critères récents d'indice de compressibilité et de résilience sous chape qui n'existent pas dans les autres pays d'Europe. On a donc dû refaire un essai spécifique du complexe de dalle pour obtenir, en transmission solidienne, un niveau compatible avec le label Qualitel exigé par le maître d'ouvrage sur le bâtiment d'Obernai. Comme il fallait supprimer le résilient phonique, on a effectué les mesures avec un OSB qui a été remplacé sur le chantier par un ravoirage qui est de même densité."

> site : www.objectif-bois.fr







crédits photos : R. Mury

### Obernai

### 24 logements collectifs, R+2-R+3

| performances<br>thermiques | C*  | chauffage<br>uniquement |
|----------------------------|-----|-------------------------|
| Valeur RT 2005             | 130 | 80                      |
| Valeur BBC                 | 65  | 15                      |
| Valeur bâtiment nord       | 99  | 33                      |
| Valeur bâtiment sud        | 96  | 31                      |

\*C = consommations conventionnelles d'énergie primaire du bâtiment pour le chauffage, le refroidissement, la ventilation, la production d'eau chaude sanitaire et l'éclairage des locaux.

### > 1

Bâtiment sud, coursive.

### > 2

Passage des canalisations dans les panneaux de plancher.

### > 3

Les réseaux électriques filent au-dessus du panneau et seront noyés dans un ravoirage.

### > 4

Levage d'un mur. On voit clairement les réservations verticales dans le mur, pour le passage des réseaux électriques.

### > 5

Le chantier en cours de levage. Durant cette phase, les panneaux sont protégés par la membrane d'étanchéité.

### **Prix HT** de construction constatés

(valeurs actualisées en septembre 2008) - Opération réceptionnée septembre 2008

| désignation                              | montant<br>€/HT | %    | montant<br>logement | mt/m²<br>SHON €/HT | mt/m²<br>SHAB€/HT |
|------------------------------------------|-----------------|------|---------------------|--------------------|-------------------|
|                                          |                 |      | 24                  | 2 340              | 2 018             |
| Maçonnerie                               | 375 530         | 15 % | 15 647              | 160                | 186               |
| Charpente - ossature bois - vêtures      | 799 760         | 31%  | 33 323              | 342                | 396               |
| Couverture - étanchéité - zinguerie      | 144 150         | 6 %  | 6 006               | 62                 | 71                |
| Charpente métallique                     | 170 710         | 7 %  | 7 113               | 73                 | 85                |
| Menuiseries extérieures bois             | 157 720         | 6%   | 6 572               | 67                 | 78                |
| Métallerie - serrurerie                  | 79 680          | 3 %  | 3 320               | 34                 | 39                |
| Total clos couvert                       | 1 727 550       | 67 % | 71 981              | 738                | 856               |
| Menuiseries intérieures & escaliers bois | 106 730         | 4%   | 4 447               | 46                 | 53                |
| Plâtrerie & isolation                    | 110 700         | 4 %  | 4 613               | 47                 | 55                |
| Chapes - carrelage - faïence             | 67 880          | 3 %  | 2 828               | 29                 | 34                |
| Revêtements de sols minces collés        | 46 900          | 2 %  | 1 954               | 20                 | 23                |
| Peinture - papiers peints                | 105 160         | 4%   | 4 382               | 45                 | 52                |
| Total parachèvement                      | 437 370         | 17 % | 18 224              | 187                | 217               |
| Plomberie sanitaire                      | 88 160          | 3 %  | 3 673               | 38                 | 44                |
| Chauffage gaz - ECS - VMC                | 225 180         | 9 %  | 9 383               | 96                 | 112               |
| Electricité courants forts et faibles    | 107 800         | 4%   | 4 492               | 46                 | 53                |
| Total fluides                            | 421 140         | 16 % | 17 548              | 180                | 209               |
| Total construction euros HT              | 2 586 060       | 100% | 107 753             | 1 105              | 1 281             |
| Terrassements aménagements extérieurs    | 184 350         |      | 7681                |                    |                   |
| Réseaux extérieurs                       | 101 100         |      | 4213                |                    |                   |
| Photovoltaïque                           | 29 000          |      | 1208                |                    |                   |
| Total adaptations                        | 314 450         |      | 13 102              | 134                | 156               |
| Total opération euros HT                 | 2 900 510       | 100% | 120 855             | 1 240              | 1 437             |

# Vosges (88), à Chantraine, 18 logements collectifs et 4 logements individuels

Ces logements collectifs s'organisent autour d'un axe central qui rassemble les accès aux logements, les circulations et les escaliers. Des stationnements sont intégrés dans un demi sous-sol. Construction 2008.





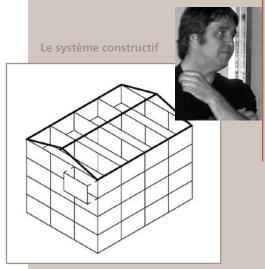
### le programme

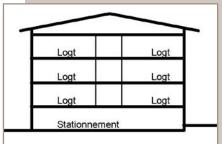
Réalisation de 18 logements collectifs et de 4 logements individuels à ossature bois.

### le maître d'ouvrage

OPAC 88.

### les intervenants


M. François LAUSECKER, architecte, Gerardmer (88).


Entreprise SOCOPA, bois - ossature, M. Nicolas MOREAU Vagney (88).

Entreprise MICHEL, bois - menuiserie, Epinal (88).

### le choix contructif

Les murs sont réalisés avec des panneaux à ossature bois, comportant une contre isolation intérieure. Les planchers sont constitués de poutres LC, connectées à une dalle béton.





**Coupe transversale** 

# François LAUSECKER, architecte

### Le choix des planchers bois béton

"J'ai souhaité utiliser sur ce projet le système Cosylva, que j'avais pu tester sur un autre projet de logements collectifs huit ans auparavant, car j'avais besoin d'obtenir des planchers sans refends, et ce système permet précisément d'obtenir des portées supérieures à celles des planchers classiques. Il est possible d'aller jusqu'à 7,20 m sans problème. Le système se compose de poutres en lamellé-collé reliées par des panneaux bois qui font office de fond de coffrage. Une fois la chape de béton coulée, on obtient un plancher collaborant qui a des propriétés similaires aux planchers collaborants bacs aciers béton, et possède une masse supérieure à un plancher bois de même épaisseur, ce qui est intéressant sur le plan de l'inertie thermique et des problématiques de confort d'été. L'autre avantage de ce système est sa performance sur le plan du confort acoustique, un point qu'il faut particulièrement soigner dans le logement collectif.

|                                     | Volume bols dan                         | J 1 C          | avia          | ge de en                   | iarramic                       |                |
|-------------------------------------|-----------------------------------------|----------------|---------------|----------------------------|--------------------------------|----------------|
| réf.                                | élément d'ouvrage                       | unité          | nb<br>d'unité | ratio bois<br>en dm³/unité | volume bois/<br>élt. d'ouvrage | % du<br>volume |
| 1                                   | Plancher bois porteur                   | m²             |               | 50                         | 0                              | 0 %            |
| 2                                   | Pan d'ossature bois porteur             | m²             | 890           | 30                         | 26 700                         | 37,9 %         |
| 3                                   | Ossature poteaux-poutres                | ml             |               | 25                         | 0                              | 0%             |
| 4                                   | Charpente tradi. et lamellé-collé       | m²             | 670           | 40                         | 26 800                         | 38,1%          |
| 5                                   | Charpente industrielle                  | m²             |               | 30                         | 0                              | 0%             |
| 6                                   | Couverture à support discontinu         | m²             | 670           | 5                          | 3 350                          | 4,8 %          |
| 7                                   | Couverture à support continu            | m²             |               | 20                         | 0                              | 0%             |
| 8                                   | Sous-face de débord                     | m²             |               | 15                         | 0                              | 0 %            |
| 9                                   | Bardage en lames de bois                | m²             | 305           | 25                         | 7 625                          | 10,8 %         |
| 10                                  | Bardage en panneau dérivé du bois       | m <sup>2</sup> |               | 15                         | 0                              | 0 %            |
| 11                                  | Portes extérieures pleines              | m²             |               | 35                         | 0                              | 0 %            |
| 12                                  | Fenêtres, portes-fenêtres, châssis dive | ers m²         |               | 25                         | 0                              | 0 %            |
| 13                                  | Volets en bois                          | m²             |               | 30                         | 0                              | 0 %            |
| 14                                  | Ossature bois non-porteuse              | m²             |               | 15                         | 0                              | 0%             |
| 15                                  | Lambris                                 | m²             |               | 15                         | 0                              | 0%             |
| 16                                  | Huisserie en bois                       | U              | 125           | 20                         | 2 500                          | 3,6%           |
| 17                                  | Portes intérieures en bois v            | antail         | 125           | 25                         | 3 125                          | 4,4%           |
| 18                                  | Escalier en bois                        | ml             |               | 60                         | 0                              | 0%             |
| 19                                  | Parquet massif rapporté                 | m²             |               | 30                         | 0                              | 0%             |
| 20                                  | Autres parquets rapportés               | m²             |               | 15                         | 0                              | 0%             |
| 21                                  | Plinthes en bois                        | m²             | 140           | 2                          | 280                            | 0,4%           |
| 22                                  | Garde-corps en bois                     | ml             |               | 30                         | 0                              | 0%             |
| 23                                  | Divers                                  | m²             |               | 2                          | 0                              | 0 %            |
| Volu                                | me total de bois dans l'ouvrage (       | en dm          | ·)            |                            | 70 380                         | 100 %          |
| SHO                                 | N de l'ouvrage                          |                |               |                            | 1 917                          |                |
| Volume de bois en dm³/m² de SHON 37 |                                         |                |               |                            |                                |                |

Volume bois dans l'ouvrage de Chantraine

| > 1          |                                  |
|--------------|----------------------------------|
| Les cages ei | n béton accueillent les services |
| communs e    | t les escaliers.                 |

### > 2

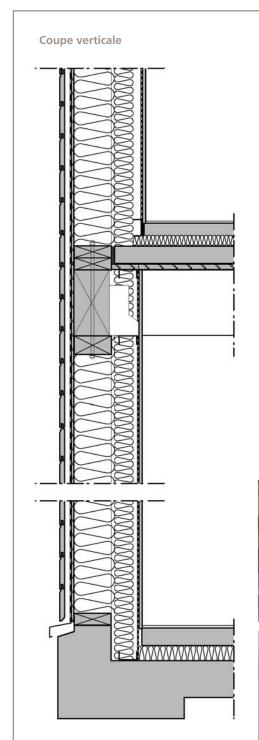
Vue sur le batiment R+2 en fin de travaux.

### > 3

Le plancher est en cours de réalisation. Les plaques d'OSB sont interrompues au droit des poutres, pour permettre l'implantation des connecteurs, qui établiront la connection entre bois et béton.

### > 4

Vue sur les logements indépendants.




Ce type de plancher mixte nous permet de traiter les appartements comme des boites dans la boite - nous posons un isolant sur la chape du plancher que nous recouvrons d'une seconde chape - et de limiter les bruits d'impacts, un des points faibles du bois. Comme nous attendons l'achèvement complet du second œuvre pour réaliser les tests acoustiques, nous n'avons donc pas encore de résultats précis. Mais je me souviens que sur notre précédente opération, les tests avaient relevé un affaiblissement acoustique de 12db, ce qui est énorme. Les opérateurs pensaient même que leurs appareils étaient en panne!

Par rapport à des panneaux de bois massif type KLH, les planchers bois-béton présentent des avantages et des inconvénients. L'avantage principal est qu'on peut laisser la sous-face apparente dans les logements. Le désavantage majeur provient du fait que l'on a deux phases de coulages de béton qui consomment du temps de chantier et obligent à protéger soigneusement les panneaux. Il faut toutefois relativiser, car si la mise en œuvre des panneaux pleins est plus rapide, la mise en place des réseaux sur ce type de construction nécessite tout un traitement de second œuvre complexe avec pose de faux-plafond, passage des gaines, etc, et dans les cas où l'on veut laisser le sol apparent, un soin méticuleux est aussi nécessaire. Nous avons pu passer les réseaux dans les murs ou dans la chape, hormis quelques rainures en plafond pour le passage des éclairages en plafond."



# ••• suite Vosges







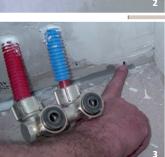
Revetement sol
Chape béton 50 mm
Isolation 40 mm
Dalle compression béton coulée
Connecteurs métalliques 70 mm
Panneau CTBH 22 mm
Poutre LC 160/260 fixée sur sabot

### mur extérieur

Bardage bois horizontal (21/152mm)
Lattage vertical (27/40)
Pare-pluie
Panneau OSB 10mm
Ossature BM (48/147), entraxe 600m
Isolation 160mm
Isolation 75mm
Pare-vapeur
Plaque BA 13mm sur ossature métallique

### plancher RdC

Revêtement sol Chape 70 mm Isolant 60 mm Dalle béton 100 mm




# François LAUSECKER, architecte

### **Gérer globalement** l'étanchéité à l'air

"Les parois verticales sont en ossature bois avec un contremur en plâtre sur la face intérieure. Comme c'était le premier chantier bois du maître d'ouvrage, l'Opac de Chantraine, les niveaux de consommation énergétiques visés étaient à l'origine la RT 2005 -10/15%. Très vite, nous nous sommes rendus compte que nous pourrions dépasser cet objectif, et arriver aux niveaux du bâtiment basse consommation. Nous avons poussé la maîtrise d'ouvrage à prendre en charge le surcoût des triples vitrages, tout en cherchant à anticiper les questions d'étanchéité à l'air du bâtiment, un point sur lequel on sentait bien qu'il fallait être très vigilant. Une première série de tests d'étanchéité à l'air a été menée une fois les cloisons posées dans un des appartements qui nous paraissait le plus défavorable sur le plan des fuites. Cela nous a permis de déceler les défauts et de corriger toutes les zones qui n'étaient pas traitées de façon optimale. Les premiers résultats des tests indiquaient des fuites d'air au niveau des dalles et surtout sur les coffres de volet roulant. Nous avons briefé les entreprises sur les points à renforcer, elles ont posé du mastic entre la chape et le mur, étanché les gaines électriques, nous avons également contrôlé le colmatage des gaines de ventilation, des fenêtres, etc. Après ces petits travaux d'une demi-journée, nous avons réalisé un nouveau test qui a montré une baisse des fuites d'air de plus de 50 %. Et cela avec une plue-value de travaux qui se résume à quelques cartouches de mastic!

Sur l'opération de Chantraine nous avons atteint une consommation de 58,9 KWh/m², mais je pense qu'en réalité nous sommes en dessous de cette valeur de quelques kilowatts.



En effet, la RT 2005 nous pénalise puisqu'elle ne prend pas en compte toute une série d'équipements que nous avons mis en place, comme les chauffe-eau solaires et la ventilation double-flux. Nous l'avions déjà constaté sur d'autres chantiers, les calculs sont meilleurs avec une ventilation hygro B qu'avec une double-flux, alors que du fait de l'étanchéité à l'air du bâtiment et grâce à l'isolation, les déperditions sont moins importantes!"



Nicolas MOREAU, entreprise Socopa Intérêt et limites de l'usage des planchers connectés bois-béton

"La particularité du bâtiment est l'utilisation de ces planchers mixtes bois-béton. Ce type de plancher permet d'obtenir de grandes portées et présente aussi un intérêt sur le plan acoustique. Le bâtiment reste une construction bois, mais en fait, sur le chantier, c'est le béton qui dicte la cadence des travaux. A Chantraine, la mise en œuvre a été délicate du fait de la volonté de l'architecte de laisser la sous-face du plancher apparente. Les poutres devaient être livrées, en sachant qu'il fallait éviter toute fuite qui aurait pu tacher les solives qui constituaient une partie du décor de l'appartement. Nous avions pris des précautions et nous n'avons eu à reprendre que quelques coulures, facilement éliminées par ponçage. Habituellement, le problème ne se pose pas puisque l'on cache sous un faux-plafond ces défauts d'aspect éventuels. La mise en place de la dalle béton a été sous-traitée à une entreprise de maçonnerie qui était tenue de protéger très soigneusement le sol et les remontées de mur avec un polyane, et devait également veiller à ne pas mettre en œuvre un béton trop liquide. La relation que l'on établit avec le sous-traitant est fondamentale pour le respect des ouvrages et le bon déroulement du chantier.

Si l'on compare les planchers mixtes avec les planchers en bois massif, on s'aperçoit qu'ils sont plus compliqués à mettre en œuvre et demandent plus de manutention. Il faut d'abord placer les solives une par une. En matière de « coup de grue », pour une pièce de 12 mètres de long, cela se traduit par 15 levages successifs, contre 5 pour des planchers bois massif. Une fois les solives en place, il faut poser des plaques de bois pour pouvoir marcher sur le plancher. Avant le coulage du béton (une phase qui va perturber le chantier et que l'on doit effectuer hors gel), il est impératif d'étayer toutes les solives pour éviter la flèche provoquée par le poids du béton. Le plancher fonctionne sur le principe des dalles collaborantes qui n'acquièrent leur raideur qu'une fois que le béton est sec. La réglementation incendie pénalise d'ailleurs ces systèmes, puisqu'elle oblige à élargir les sections des poutres bois alors que le béton aussi participe à la tenue au feu de la structure. Si l'on pouvait avoir une réglementation moins contraignante, on pourrait avoir une structure plus fine et limiter les quantités de bois utilisées sur le chantier. Au final les poutres sont presque autoportantes : on perd un peu l'intérêt du système et surtout on augmente les coûts du bâtiment."







### **Chantraine**

18 logements collectifs et 4 logements individuels

| performances<br>thermiques | C*  | chauffage<br>uniquement |
|----------------------------|-----|-------------------------|
| Valeur RT 2005             | 116 |                         |
| Valeur BBC                 | 58  |                         |
| Valeur bâtiment            | 64  | 38                      |

\* C = consommations conventionnelles d'énergie primaire du bâtiment pour le chauffage, le refroidissement, la ventilation, la production d'eau chaude sanitaire et l'éclairage des locaux.

### > 4

A l'extérieur, le bardage métallique alterne avec le bardage bois peint.

### > 5

Les poutres en bois resteront apparentes dans les logements grâce à l'utilisation d'un plancher bois béton connecté.

### > 6

L'axe central en cours de réalisation, accueille les escaliers, et est éclairé à chaque extrémité.

### Prix HT de construction constatés

(valeurs actualisées en septembre 2008) - Opération réceptionnée fin 2008

| ( - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -     |                 |      |                     |                    |                    |                   |
|---------------------------------------------|-----------------|------|---------------------|--------------------|--------------------|-------------------|
| désignation                                 | montant<br>€/HT | %    | montant<br>logement | mt/m²<br>SHOB €/HT | mt/m²<br>SHON €/HT | mt/m²<br>SHAB€/HT |
|                                             |                 |      | 18                  | 2 576              | 1 871              | 1 214             |
| Maçonnerie                                  | 306 001         | 16%  | 17 000              | 119                | 164                | 252               |
| Charptossat. bois - vêtures & menui. exter. | 746 290         | 39 % | 41 461              | 290                | 399                | 615               |
| Couverture bac acier étanchéité - zinguerie | 41 500          | 2 %  | 2 306               | 16                 | 22                 | 34                |
| Métallerie - serrurerie                     | 86 950          | 5 %  | 4 831               | 34                 | 46                 | 72                |
| Total clos couvert                          | 1 180 741       | 62 % | 65 597              | 458                | 631                | 973               |
| Menuiseries intérieures                     | 40 255          | 2 %  | 2 236               | 16                 | 22                 | 33                |
| Plâtrerie & isolation                       | 140 900         | 7 %  | 7 828               | 55                 | 75                 | 116               |
| Chapes - carrelage - faïence                | 67 470          | 4%   | 3 748               | 26                 | 36                 | 56                |
| Revêtements de sols minces collés           | 39 530          | 2 %  | 2 196               | 15                 | 21                 | 33                |
| Peinture - papiers peints                   | 53 500          | 3 %  | 2 972               | 21                 | 29                 | 44                |
| Total parachèvement                         | 341 655         | 18 % | 18 981              | 133                | 183                | 281               |
| Plomberie sanitaire                         | 73 150          | 4 %  | 4 064               | 28                 |                    | 60                |
| Chauffage gaz - ECS - VMC                   | 161 780         | 8%   | 8 988               | 63                 | 86                 | 133               |
| Electricité courants forts et faibles       | 122 945         | 6%   | 6 830               | 48                 | 66                 | 101               |
| Total fluides                               | 357 875         | 19%  | 19 882              | 139                | 191                | 295               |
| Ascenseur                                   | 28 500          | 1 %  | 1 583               | 11                 | 15                 | 23                |
| Total ascenseur                             | 28 500          | 1 %  | 1 583               | 11                 | 15                 | 23                |
| Total construction euros HT                 | 1 908 771       | 100% | 106 043             | 741                | 1 020              | 1 572             |
| Mur soutenement                             | 79 529          |      |                     |                    |                    |                   |
| Terrassements VRD                           | 181 000         |      |                     |                    |                    |                   |
| Espaces libres - plantations                | 7 200           |      |                     |                    |                    |                   |
| Total adaptations                           | 267 729         |      | 14 874              | 104                | 143                | 221               |
| Total opération euros HT                    | 2 176 500       |      | 120 917             | 845                | 1 163              | 1 793             |

# Nord (59), à Roubaix, 200 chambres et studios pour étudiants

Une réalisation en structure mixte, béton et panneaux ossature bois et menuiserie Mélèze, pour une résidence étudiante et des commerces. Livraison avril 2009.



### le programme

Le programme consiste en la réalisation de 200 chambres et studios pour étudiants.

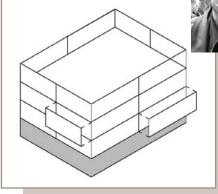
### maître d'ouvrage

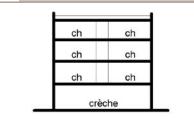
SNC Les Vignes à Lille (59).

### les intervenants

Agence DELEMAZURE, M. Luc DELEMAZURE, architecte, Lille (59).

Mme Laure PETTIER (chef de projet).


Entreprise SOCOPA, bois-ossature, M. Jean-Luc MARCHAL, Vagney (88).


MENUISERIES du Haut-Pays, Lot menuiserie extérieure bois Mélèze M. LAVOGEZ, Preures (62).

### le choix contructif

L'ouvrage est principalement réalisé en béton. Pour certains corps d'ouvrage, seule la structure principale béton a été gardée, pour réaliser une enveloppe extérieure avec des panneaux en ossature bois, posés en applique sur la structure béton.







Coupe transversale

# Luc DELEMAZURE, architecte, Agence Delemazure

"Le programme est réparti en trois pavillons orientés vers le cœur de la parcelle. perpendiculairement à la rue. Cette solution d'îlot ouvert nous paraissait préférable à la création d'un front bâti fermé sur l'espace public. Les pignons sur rue ont été traités en béton, pour donner un sentiment de protection et les façades latérales en bois, un matériau plus chaleureux, plus poreux, exprimant la dimension plus conviviale de l'édifice. La maîtrise d'ouvrage voulait que la résidence puisse, le cas échéant, être transformée en immeuble de bureaux. Les chambres sont installées entre deux refends réalisés alternativement en béton, pour les voiles porteurs et en structures légères (BA18), dans le but de faciliter ce changement d'affectation et de retrouver des espaces locatifs de taille supérieure à celle des logements étudiants, dont la superficie moyenne est de 14 m<sup>2</sup>.

### Volume bois dans l'ouvrage de Roubaix

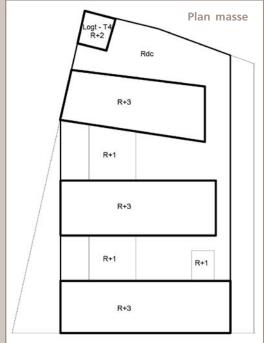
Vue d'ensemble des 3 corps de bâtiment.

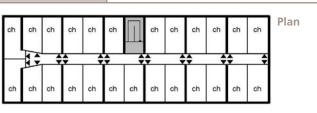
> 2

Entre 2 corps de bâtiments, les façades bois se font faces.

> 3

Les cadres des murs sont en cours de fabrication.




| réf. | élément d'ouvrage                      | unité          | nb<br>d'unité | ratio bois<br>en dm³/unité | volume bois/<br>élt. d'ouvrage | % du<br>volume |
|------|----------------------------------------|----------------|---------------|----------------------------|--------------------------------|----------------|
| _1   | Plancher bois porteur                  | m²             |               | 50                         | 0                              | 0 %            |
| 2    | Pan d'ossature bois porteur            | m²             | 898           | 30                         | 26 940                         | 38,3 %         |
| 3    | Ossature poteaux-poutres               | ml             |               | 25                         | 0                              | 0 %            |
| 4    | Charpente trad. et lamellé-collé       | m²             |               | 40                         | 0                              | 0 %            |
| 5    | Charpente industrielle                 | m²             |               | 30                         | 0                              | 0 %            |
| 6    | Couverture à support discontinu        | m <sup>2</sup> |               | 5                          | 0                              | 0 %            |
| 7    | Couverture à support continu           | m <sup>2</sup> |               | 20                         | 0                              | 0 %            |
| 8    | Sous-face de débord                    | m²             |               | 15                         | 0                              | 0 %            |
| 9    | Bardage en lames de bois               | m²             | 898           | 25                         | 22 450                         | 31,9 %         |
| 10   | Bardage en panneau dérivé du bo        | is m²          |               | 15                         | 0                              | 0 %            |
| 11   | Portes extérieures pleines             | m <sup>2</sup> |               | 35                         | 0                              | 0 %            |
| 12   | Fenêtres, portes-fenêtres, châssis div | /ers m²        |               | 25                         | 0                              | 0 %            |
| 13   | Volets en bois                         | m²             |               | 30                         | 0                              | 0 %            |
| 14   | Ossature bois non-porteuse             | m <sup>2</sup> |               | 15                         | 0                              | 0 %            |
| 15   | Lambris                                | m²             |               | 15                         | 0                              | 0 %            |
| 16   | Huisserie en bois                      | U              | 440           | 20                         | 8 800                          | 12,5%          |
| 17   | Portes intérieures en bois             | vantail        | 440           | 25                         | 11 000                         | 15,6%          |
| 18   | Escalier en bois                       | ml             |               | 60                         | 0                              | 0 %            |
| 19   | Parquet massif rapporté                | m²             |               | 30                         | 0                              | 0 %            |
| 20   | Autres parquets rapportés              | m <sup>2</sup> |               | 15                         | 0                              | 0 %            |
| 21   | Plinthes en bois                       | m²             | 620           | 2                          | 1 240                          | 1,8 %          |
| 22   | Garde-corps en bois                    | ml             |               | 30                         | 0                              | 0 %            |
| 23   | Divers                                 | m²             |               | 2                          | 0                              | 0 %            |
| Volu | ıme total de bois dans l'ouvrage       | (en dm         | 3)            |                            | 70 430                         | 100 %          |
| SHC  | N de l'ouvrage                         |                |               |                            | 5 791                          |                |
| Vol  | ume de bois en dm³/m² de SH0           | ON             |               |                            | 12                             |                |

Aucune performance thermique dépassant la réglementation ne nous avait été demandée, le bâtiment remplit simplement les exigences de la RT 2005 sur le plan de l'isolation et des équipements de chauffage. L'utilisation d'une façade en bois qui aille au delà du simple parement nous convenait pour sa dimension écologique et la qualité des finitions. Lorsque tout est préfabriqué en usine, le temps de chantier est raccourci puisque le temps de fabrication est invisible au niveau du chantier, et on n'est pas obligé de contrôler la réalisation jusqu'au bout, comme cela doit parfois se faire sur des façades en parpaings. Par contre, je pense que l'on aurait pu aller plus loin dans la préfabrication : les menuiseries auraient pu être posées en usine, ce qui aurait évité le changement de position des fenêtres, prévues initialement pour être placées sur le nu intérieur du mur, et finalement installées sur son nu extérieur. Les lots ayant été attribués à deux contractants distincts lors de l'appel d'offres, les garanties demandées par chacune des deux entreprises ont conduit à poser des précadres que l'on aurait pu éviter. De plus, cette situation n'est pas cohérente

en matière d'organisation de chantier, puisque les façades sont posées bien avant que l'on obtienne un clos-couvert de l'édifice. Un second problème est venu des performances acoustiques de la façade. Il n'existe pas de PV de pose, il a donc fallu conduire des tests acoustiques complémentaires avant l'achèvement total du bâtiment. Bien qu'ils aient conclut à la conformité du bâtiment par rapport aux normes en vigueur, ils montraient que l'on se situait assez près des seuils limites, et je ne pense pas que l'on pourrait utiliser le même détail de façade le long d'une voie avec un classement au bruit supérieur sans renforcer l'isolation phonique."







### ••• suite Nord

# Coupe verticale

### toiture

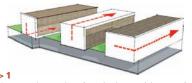
Couverture Etanchéité Isolant 100mm Dalle béton 20 cm Plaque BA 13 mm sur rail

### mur extérieur

Bardage Mélèze non traité clin ajouré 18 mm Lattage (27/40) Lame d'air Pare-pluie type Delta Façade Panneau OSB 10 mm, Ossature BM (48/147) entraxe 600 mm Isolation laine de verre 150 mm Frein-vapeur Plaque BA 18 mm sur rail Stylmob

### plancher R+2 - R+3

Revêtement sol souple Calfeutrement 20 mm Dalle béton 20 cm Isolant laine de roche 200 mm Plaque BA 13 sur rail


### plancher R+1

Revêtement sol souple
Dalle béton 20 cm
Isolant laine de roche 200 mm
Faux plafond technique
Plaque BA 18 sur rail



# **L'avis de Jean-Luc MARCHAL,**entreprise SOCOPA,

"La structure de la résidence étudiante a été construite en béton, mais l'architecte souhaitait avoir une façade bois. Nous avons mis en œuvre un procédé de mur rideau testé sur d'autres opérations, dont certains chantiers de rénovations. L'avantage du système est évident dans tous les cas où la façade n'est pas porteuse : il permet de supprimer les ponts thermiques, autorise un travail plus rapide et réduit les nuisances des travaux, puisque tout est préfabriqué en usine. Pour le projet de Crouy, nous avons réalisé en atelier des panneaux de façade de 22 cm d'épaisseur comprenant le mur extérieur - du Mélèze naturel traité classe III - l'isolation, le parepluie. L'installation des menuiseries, les raccords avec la toiture et les finitions intérieures étaient laissées au bon soin de l'entreprise générale, responsable du reste du chantier. Les éléments de façade arrivaient sur le chantier sous forme de panneaux qui pouvaient atteindre 10 m de long. Leur écartement et leur aplomb, par rapport au plancher béton, s'ajustaient par des ferrures accrochées sur les nez de dalles que nous avons développées nous-mêmes. Une fois mis en place, les panneaux ont été solidarisés, leurs jointures et les espaces entre nez de dalle et façade furent colmatés avec de la mousse.



Ce croquis exprime le principe architectural, avec les 2 types d'enveloppes, bois ou minérale.



Le montage de toute la façade a pris moins de deux mois : l'entreprise de gros œuvre donnait le rythme de l'avancement des travaux, et nous nous étions calés sur son planning. Selon moi, ces systèmes de façades sur structure béton sont un bon compromis entre deux types de fabrication : ils permettent de réduire le coût de la construction, qui peut être élevé en ossature bois, et suppriment les inconvénients des façades traditionnelles en béton, qui présentent parfois des problèmes de finition ou des problèmes de confort thermique."

### **Acoustique**

Des mesures d'isolement acoustique au bruit aérien ont été réalisées par la société Acoustique et Conseil. **Les valeurs obtenues sont les suivantes :** 

| [ | émission  | local de<br>réception | DnTA, tr<br>mesuré en dB | objectif | conformité | 1 |
|---|-----------|-----------------------|--------------------------|----------|------------|---|
|   | extérieur | chambre R+3           | 29 et 28                 | 30       | CT         | ı |

Les commentaires de la société Acoustique et Conseil sont les suivants : "Les deux résultats de mesures sont conformes à l'objectif fixé avec la tolérance de mesure de +/-3dB. La résidence est en cours de travaux. Lors des mesures nous avons constaté les points suivants :

- 1\_ absence de bouche d'entrée d'air,
- 2\_ absence de porte d'entrée,
- 3\_ absence de retour au niveau des doublages intérieurs (plaque de plâtre),
- 4\_ chemin de transmission par le biais de la trémie ascenseur pour la mesure dans la chambre A316.

L'entreprise a donc installé dans les deux chambres et à notre demande, les parties internes des bouches d'entrée d'air, comblé

de laine minérale le plénum entre la façade bois et le doublage de plaque de plâtre et mis en œuvre un doublage composé d'une plaque de plâtre et de polystyrène en guise de porte. Ces aménagements ont permis de se rapprocher des conditions normales de finition. Les valeurs mesurées sont donc à priori des minimums attendus lors du parfait achèvement de l'ouvrage. Lors des mesures, nous avons constaté que la bouche d'entrée d'air constitue à priori un point faible. Cependant seule la partie interne était mise en œuvre lors de notre intervention. L'avancement des différents travaux permettra d'augmenter l'étanchéité de la façade et donc d'augmenter à priori ses performances acoustiques."



### Roubaix,

résidence Crouv

# 200 logements individuels

### > 2

Les murs reçoivent l'isolant et le pare-vapeur pendant la phase de préfabrication.

### > 3

Le bardage est également intégré dans la préfabrication. On notera l'absence de bardage en pied de panneau, qui sera mis en place in situ, après la pose des panneaux.

### \_ 1

Le bois est rappelé sur les façades minérales avec des encadrements de menuiseries en bois, dans le nu de la façade ou légèrement saillants.
On notera dans ce cas la forme de pente en partie haute.

### > 5

Les murs sont mis en place; le trame rectangulaire du bardage permet d'identifier les zones de raccord de panneaux, dans lesquelles le bardage sera mis en œuvre, après raccordement étanche.

### Prix HT de construction constatés

(valeurs actualisées en septembre 2008) - Opération réceptionnée avril 2009.

| désignation                                | montant<br>€/HT | %    | montant<br>logement | mt/m²<br>SHOB €/HT | mt/m²<br>SHON €/HT | mt/m²<br>SHAB €/HT |
|--------------------------------------------|-----------------|------|---------------------|--------------------|--------------------|--------------------|
|                                            |                 |      | 200                 | 7 335              | 5 791              | 3 630              |
| Maçonnerie                                 | 141 775         | 4%   | 709                 | 19                 | 24                 | 39                 |
| Façades ossature bois                      | 369 150         | 9%   | 1 846               | 50                 | 64                 | 102                |
| Etanchéité                                 | 135 890         | 3 %  | 679                 | 19                 | 23                 | 37                 |
| Menuiseries extérieures alu + occultations | 441 268         | 11%  | 2 206               | 60                 | 76                 | 122                |
| Menuiseries extér. bois Ug=1,6 W/m².°K     | 175 000         | 4 %  | 875                 | 24                 | 30                 | 48                 |
| Métallerie - serrurerie                    | 102 292         | 3 %  | 511                 | 14                 | 18                 | 28                 |
| Total clos couvert                         | 1 365 375       | 34 % | 6 827               | 186                | 236                | 376                |
| Menuiseries intérieures                    | 248 240         | 6%   | 1 241               |                    |                    |                    |
| Plâtrerie & isolation                      | 399 110         | 10%  | 1 996               | 54                 | 69                 | 110                |
| Carrelage - faïence                        | 78 110          | 2 %  | 391                 | 11                 | 13                 | 22                 |
| Revêtements de sols minces collés          | 119 840         | 3 %  | 599                 | 16                 | 21                 | 33                 |
| Peinture - papiers peints                  | 258 940         | 6%   | 1 295               | 35                 | 45                 | 71                 |
| Total parachèvement                        | 1 104 240       | 28%  | 5 521               | 117                | 148                | 236                |
| Plomberie sanitaire chauffage gaz          | 914 850         | 23%  | 4 574               | 125                | 63                 | 73                 |
| Electricité courants forts et faibles      | 583 150         | 15%  | 2 916               | 80                 | 101                | 161                |
| Ascenseurs                                 | 33 170          | 1 %  | 0,02                | 5                  | 6                  | 9                  |
| Total fluides                              | 1 531 170       | 38 % | 7 490               | 205                | 164                | 234                |
| Total construction euros HT                | 4 000 785       | 100% | 19 838              | 508                | 547                | 846                |
| Terrassements VRD                          | 191 316         |      |                     |                    |                    |                    |
| Fondations profondes                       | 93 893          |      |                     |                    |                    |                    |
| Espaces libres - plantations               | 38 520          |      |                     |                    |                    |                    |
| Total adaptations                          | 323 729         |      | 1 619               | 62                 | 87                 | 101                |
| Total opération euros HT                   | 4 324 514       |      | 21 457              | 570                | 634                | 947                |

# Questions générales de l'étude de cas

### Comparaison des 4 réalisations

Les 4 opérations étudiées présentent des solutions constructives qui utilisent du bois, mais chacune avec des configurations très différentes. On trouve du panneau ossature bois pour les murs avec des panneaux en bois massif pour les planchers, pour les 43 logements à Arques, des panneaux en bois massifs pour les murs et planchers de l'opération d'Obernai, des murs à ossature bois et des planchers bois connectés à du béton pour Chantraine et enfin une mixité structure béton et murs ossature bois, pour Roubaix. De fait une opération « bois » peut faire appel à de multiples techniques. Nous essayerons dans cette page de discerner les avantages et inconvénients des solutions utilisées.

Les caractéristiques des 4 opérations Les 4 opérations ont des coûts de construction qui oscillent entre 2 et 4 millions d'euros. Les surfaces SHON vont de 2000 à 4000 m². Les tailles moyennes de logements des opérations d'Arques et Obernai sont proches, autour de 85 m². Les logements de Chantraine sont un peu plus petits, avec une moyenne de 67 m² tandis que la moyenne des logements étudiants à Roubaix s'établit à 18 m². Les ratios SHON / SHAB d'Arques et Obernai sont proches, respectivement de 87 et 86 %.

Dans les 2 cas, les accès sont réalisés par des coursives extérieures. Ils deviennent plus pénalisant en termes de coût pour Chantraine et Roubaix, avec des valeurs de 66 % et 63 %. Ces ratios sont dus à un choix de conception dans l'opération de Chantraine, au profit du confort des habitants avec des larges coursives qui desservent des caves à l'étage. Dans le cas de Roubaix, ce ratio s'explique par la taille réduite des logements.

### Résumé

des caractéristiques des 4 opérations

| Caractéristiques des<br>4 opérations                                | Arques     | Obernai    | Chantraine | Roubaix    |
|---------------------------------------------------------------------|------------|------------|------------|------------|
| Montant global de travaux de construction actualisés à octobre 2008 |            |            |            |            |
| (euros HT, hors VRD et aménagements)                                | 3 519 652€ | 2 586 060€ | 1 908 771€ | 4 000 785€ |
| Année de réception de l'ouvrage                                     | 2008       | 2008       | 2008       | 2009       |
| Surface SHOB (m²)                                                   | 5 954      |            | 2 576      | 7 335      |
| Surface SHON (m²)                                                   | 4 227      | 2 340      | 1 835      | 5 791      |
| Surface SHAB (m²)                                                   | 3 663      | 2 018      | 1 214      | 3 630      |
| Ratio SHON/SHAB                                                     | 87 %       | 86 %       | 66 %       | 63 %       |
| Nombre de logements (unité)                                         | 43         | 24         | 18         | 200        |
| Surface moyenne d'un logement (m²)                                  | 85         | 84         | 67         | 18         |

Comparaison sur le plan thermique

L'opération de Chantraine s'approche de la performance du label BBC, avec 45% d'amélioration par rapport à la RT 2005. L'opération d'Obernai se situe à mi distance entre la valeur réglementaire et le BBC, avec 25% d'amélioration par rapport à la

RT 2005. Ce qui correspond à une performance supérieure au label THPE. L'opération d'Arques améliore de 10 % sa performance par rapport à la RT 2005, et se positionne avec un label HPE.

| Caractéristiques thermiques                             | Arques | Obernai | Chantraine | Roubaix |
|---------------------------------------------------------|--------|---------|------------|---------|
| Coeff Cref RT 2005 pour l'opération                     | 100    | 130     | 116        | NC      |
| Valeur théorique BBC                                    | 50     | 65      | 58         | NC      |
| Coeff C obtenu                                          | 90     | 97      | 64         | NC      |
| Amélioration de la performance par rapport à la RT 2005 | 10 %   | 25 %    | 45 %       | NC      |







Roubaix



Argues Obernai

Pour comparer les 4 opérations en termes de coût, nous allons les ramener à des situations comparables. L'opération de Chantraine est la seule qui propose un sous-sol semi enterré, destiné aux véhicules, des caves et un ascenseur. En déduisant le coût de ces 3 éléments, on obtient un coût de construction de 1 627 771 € au lieu de 1 908 771 €. D'où un prix corrigé de 1 341 € /m² habitable.

Interprétation et comparaison des coûts

| Caractéristiques des<br>4 opérations      | Arques     | Obernai    | Chantraine | Roubaix    |
|-------------------------------------------|------------|------------|------------|------------|
| Coût total construction (corrigé) HT      |            |            |            |            |
| hors VRD et aménagement                   | 3 520 613€ | 2 587 341€ | 1 629 112€ | 4 001 887€ |
| Coût construction par m <sup>2</sup> SHAB | 961        | 1 281      | 1 341      | 1 102      |
| Amélioration de la performance            |            |            |            |            |
| par rapport à la RT 2005                  | 10 %       | 25 %       | 45 %       | 0 %        |
| Ratio SHON/SHAB                           | 87 %       | 86 %       | 66 %       | 63 %       |

### La comparaison

des coûts est synthétisée dans ce tableau

Les prix corrigés au  $m^2$  habitable des 4 réalisations s'établissent entre 1 000 et 1 340  $\in$  HT, prix construction hors aménagements.

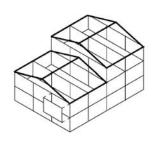
Les valeurs les plus basses, pour Arques et Roubaix, correspondent à des performances thermiques proches de la réglementation actuelle. Les prix des 2 autres opérations augmentent à priori avec l'évolution de la performance thermique : 1 281 € à Obernai pour une consommation conventionnelle

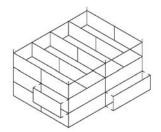
inférieure de 25 % à la RT 2005, et 1 341 € à Chantraine pour une consommation conventionnelle inférieure de 45 % à la RT 2005, c'est-à-dire très proche du label BBC. En fait cette dernière est pénalisée par son ratio SHON/SHAB de 66 % par rapport à celui d'Obernai, 86 %. On peut ainsi penser qu'à ratio égal, Chantraine présenterait un prix proche de celui d'Obernai, autour de 1 300 €/m² habitable.

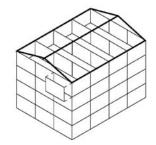
### A retenir...

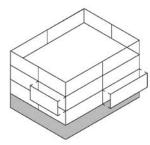
- Sur l'opération de **Chantraine**, nous avons constaté que l'utilisation d'un pare-vapeur intégré aux plaques de plâtre, n'est pas adapté à un bon niveau d'étanchéité à l'air. La bonne solution est une pose du pare-vapeur sur le mur principal, complétée d'une contre isolation intérieure. L'écart entre la plaque intérieur et le PV permet de passer les réseaux électriques et amène une protection dans le cas où le locataire installerait (par exemple) des fixations de meuble.
- L'intérêt du plancher bois connecté béton doit être bien pesé. A son crédit, il permet de garder des éléments structurels bois visibles à l'intérieur du logement et il possède une épaisseur faible. A contrario, sa mise en œuvre impose 2 phases humides sur le chantier, d'abord pour la dalle de compression puis pour la chape, qui nuisent à la logique sèche et rapide d'un chantier bois. En outre, l'argument de la diminution des sections des poutres du fait de la connexion, ne tient pas dans une zone sismique.
- Les panneaux bois massifs utilisés à **Obernai** ont permis d'arriver à un rapport prix-performance correct. Mais cela s'est réalisé avec une très forte implication de l'architecte; ces composants intègrent des logiques d'installation, telles que les réservations électriques qui sont potentiellement performantes. Mais la performance n'est effective que si les entreprises de second œuvre les maîtrisent. Ce qui aujourd'hui est rarement le cas.
- La mixité bois béton, avec des structures dalles et refends béton, et parois extérieures en ossature bois, apparait performante. Contrairement a une mise en œuvre entre dalles, qui condamne le charpentier à subir les côtes du maçon, la pose en applique le libère complètement. Les valeurs d'acoustique mesurées entre niveaux sont justes acceptables, dans la configuration de **Roubaix**. Dans une configuration similaire complétée par une contre isolation intérieure, il serait satisfaisant.




Bas-Rhin, (67) 24 logements R+1 - R+2 à Obernai.


Vosges, (88)
22 logements:
18 collectifs et
4 individuels
à Chantraine.

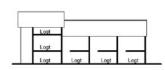

Nord, (59) 200 chambres et studios à Roubaix.

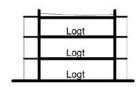



Le bâtiment est réalisé avec des murs en ossature bois, et des planchers en panneaux de bois massif. Les murs sont réalisés avec des panneaux bois massif, et portent une isolation extérieure. Les planchers sont également en bois semi-massif et portent un ravoirage et une chape. Les murs sont réalisés avec des panneaux à ossature bois, comportant une contre isolation intérieure. Les planchers sont constitués de poutres LC, connectées à une dalle béton. L'ouvrage est principalement réalisé en béton. Pour certains corps d'ouvrage, seule la structure principale béton a été gardée, pour réaliser une enveloppe extérieure avec des anneaux en ossature bois, posés en applique sur la structure béton.

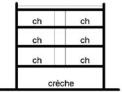







# caractéristiques


Surface SHON : 4 227 m<sup>2</sup> Surface SHON : 2 340 m<sup>2</sup> Surface SHON : 1 871 m<sup>2</sup> Surface SHAB : 3 663 m<sup>2</sup> Surface SHAB : 2 018 m<sup>2</sup> Surface SHAB : 1 214 m<sup>2</sup> Surface SHAB : 3 630 m<sup>2</sup>







| Logt | Logt |
|------|------|
| Logt | Logt |
| Logt | Logt |

